The convergence rate of the proximal alternating direction method of multipliers with indefinite proximal regularization

نویسندگان

  • Min Sun
  • Jing Liu
چکیده

The proximal alternating direction method of multipliers (P-ADMM) is an efficient first-order method for solving the separable convex minimization problems. Recently, He et al. have further studied the P-ADMM and relaxed the proximal regularization matrix of its second subproblem to be indefinite. This is especially significant in practical applications since the indefinite proximal matrix can result in a larger step size for the corresponding subproblem and thus can often accelerate the overall convergence speed of the P-ADMM. In this paper, without the assumptions that the feasible set of the studied problem is bounded or the objective function's component [Formula: see text] of the studied problem is strongly convex, we prove the worst-case [Formula: see text] convergence rate in an ergodic sense of the P-ADMM with a general Glowinski relaxation factor [Formula: see text], which is a supplement of the previously known results in this area. Furthermore, some numerical results on compressive sensing are reported to illustrate the effectiveness of the P-ADMM with indefinite proximal regularization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inexact alternating direction method with SQP regularization for the structured variational inequalities

In this paper, we propose an inexact alternating direction method with square quadratic proximal  (SQP) regularization for  the structured variational inequalities. The predictor is obtained via solving SQP system  approximately  under significantly  relaxed accuracy criterion  and the new iterate is computed directly by an explicit formula derived from the original SQP method. Under appropriat...

متن کامل

The symmetric ADMM with positive-indefinite proximal regularization and its application

Due to update the Lagrangian multiplier twice at each iteration, the symmetric alternating direction method of multipliers (S-ADMM) often performs better than other ADMM-type methods. In practice, some proximal terms with positive definite proximal matrices are often added to its subproblems, and it is commonly known that large proximal parameter of the proximal term often results in “too-small...

متن کامل

Linearized Alternating Direction Method of Multipliers via Positive-Indefinite Proximal Regularization for Convex Programming

The alternating direction method of multipliers (ADMM) is being widely used for various convex minimization models with separable structures arising in a variety of areas. In the literature, the proximal version of ADMM which allows ADMM’s subproblems to be proximally regularized has been well studied. Particularly the linearized version of ADMM can be yielded when the proximal terms are approp...

متن کامل

The symmetric ADMM with indefinite proximal regularization and its application

Due to updating the Lagrangian multiplier twice at each iteration, the symmetric alternating direction method of multipliers (S-ADMM) often performs better than other ADMM-type methods. In practical applications, some proximal terms with positive definite proximal matrices are often added to its subproblems, and it is commonly known that large proximal parameter of the proximal term often resul...

متن کامل

Improving an ADMM-like Splitting Method via Positive-Indefinite Proximal Regularization for Three-Block Separable Convex Minimization

Abstract. The augmented Lagrangian method (ALM) is fundamental for solving convex minimization models with linear constraints. When the objective function is separable such that it can be represented as the sum of more than one function without coupled variables, various splitting versions of the ALM have been well studied in the literature such as the alternating direction method of multiplier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017